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LONG-TERM GOALS 

Our long-range goal is to develop optimization methods: 1) to estimate the physical state of the 
ocean in order to understand the present and future conditions and associated variability/uncertainty, 
and 2) to utilize such forecast information for control-decisions such as optimal drifter deployment 
strategy. This is being accomplished through the use of data assimilation methods for ocean cir­
culation models and the study of extending the assimilation formulation to an optimal control 
problem. 

OBJECTIVES 

In this effort, we study application of the Monte Carlo numerical techniques to problems of ocean 
data assimilation and optimal drifter deployment. This report focuses on our continuing efforts 
on application of the particle filter to the inverse Lagrangian prediction problem relevant to drifter 
deployment. 

APPROACH 

An inverse Lagrangian prediction (ILP) problem addresses retrospective estimation of drifter tra­
jectories through a turbulent flow given their final positions. In a typical ILP scenario, the launch 
location of a single or a set of drifters in the past is sought given the present location(s) of these 
drifter(s). Due to chaotic nature of the forward Lagrangian problem and limitations in accuracy 
and resolution of current and wind data, it is usually difficult to expect an unique and determinis­
tic answer to an ILP problem. It may, however, be possible to estimate the launch site and time 
statistically so that the drifters deployed in the estimated region and time would have the largest 
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probability of arriving at the desired final location. For most practical problems it is desirable to 
minimize the optimal deployment region while maximizing the probability of successful delivery. 

One approach to solving the ILP problem is to simulate an ensemble of Lagrangian trajectories 
backwards in time using the known final locations and a stochastic model of the flow field. Due to 
the typically fast rate (exponential or geometrical functions of time) dispersion of the trajectories, 
however, the distribution of the drifter locations tends to be too diffuse to be able to locate the 
launch site. We have investigated a numerical method that employs the particle filter to control 
the spread of the drifter location. The goal is to localize the optimal deployment region using the 
compact distribution of the constrained drifter positions. 

WORK COMPLETED 

1) The initial paper on application of particle filter to the ILP problem has been submitted and 
accepted for publication in Journal of Atmospheric and Oceanic Technology (Chin and Mariano, 
2009). The article presents the methodology and the results from controlled experiments. 

2) Extensions of the published work to (i) more realistic ILP scenarios and (ii) more strongly non-
Gaussian cases have started; see RESULTS and IMPACT/APPLICATIONS sections below for 
more details. 

3) Inter-comparison study involving the EnROIF assimilation system, a Monte-Carlo (or ensemble-
based) enhancements to the existing ROIF method (Chin et al 2002), is completed for a 1/12-degree 
resolution HYCOM over Gulf of Mexico, and the result (Srinivasan et al, 2009) will be submitted 
for publication this calendar year. 

RESULTS 

We evaluate the benefit of the resampled particle filter (RPF; Chin et al 2007) by comparing two 
RPFensembles of trajectories. One is an ensemble produced with the RPF procedure denoted as r 
n , 

n = 1, . . . , N ; the other is an ensemble of trajectories without any constraint and denoted as r Ens 
n . 

To compare the two ensembles, the launch site distribution estimated by each ensemble is used to 
initialize some test drifters for forward trajectory simulations. The target locations estimated by 
the test drifters can then be used to evaluate statistical accuracy in reproducing the known target 
locations Xm, m = 1, . . . ,M . 

RPF EnsTwo skill scores are computed to compare the ensembles r 
n and r 

n . By letting G(Xm) be the 
chance (in %) of the mth target being reached by any of test drifters, we define the coverage score 
to be � � minm G(Xm). We also define the µ to be average chance (in %) of a test drifter to reach 
any of the targets. A higher µ value indicates that a drifter from the ensemble is less likely to miss 
a target and that the drifter destination is more likely to be focused near a target location. We hence 
call µ the resolution score. 
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For ILP, we assume knowledge of an empirical time characteristics of ensemble spread, quantified 
here by the standard deviation 

N 

Dr(t) = 
1 � 

∈rn(t) − r(t)∈2 (1) 
N−1 

n=1 

where r(t) is the unknown drifter trajectory, rn(t) is the nth sample of such trajectory by sim­
�

Nulation, and r(t) � (t)/N is the ensemble-mean of such samples. In ILP, the drifter 
n=1 rn

trajectories simulated backward in time are expected to converge towards each other due to causal­
ity. For example, in our test cases, we have found Dr(t) � tb for a constant b � [1.0, 2.0] by 
forward simulations. To formally express the information with which to constrain the backward 
trajectory ensemble, we let s(t) be a fictitious “noisy observation” of the unknown trajectory r(t) 

s(t) = r(t) + e(t) (2) 

where e(t) is vector of random observation errors each with a known variance E2. Assuming that 
r(t) and e(t) are uncorrelated, the variance of s(t) would become Dr(t)

2 + E2 . Since the mean 
of s(t), or an observation of the mean trajectory, is not available, we estimate it in a bootstrapping 
fashion using the ensemble mean r(t) of the on-going simulation. The probability density function 
(PDF) p

s|r of the observation s conditioned on the unknown r is used by the particle filter algorithm 
to constrain the state trajectory. The specific form of p

s|r we use is 

⎦ �F 
1 1 ∈x − r∈2 

⎡p
s|r(x|r, t) = exp �− (3) 

c 2 D2 + E2 
r 

where c is a normalization constant and F is a constant parameter to control “flatness” of the PDF. 
For F = 1, p

s|r would become a Gaussian PDF. We use F = 3 so that the PDF would have a 
relatively flat peak near its maximum. Choosing the larger value of F would give more equal 
importance (probability) to the ensemble members within a certain distance from the maximum, 
rather than favoring those in the immediate vicinity of the maximum. More complete details of the 
numerical procedure can be found in (Chin and Mariano, 2009). 

The PDF given in (3) is still uni-modal. We are thus investigating the use of a multi-modal PDF 
for p

s|r by clustering the ensemble locations and then computing the mean r for each of the cluster. 
The resulting PDF is similar to a Gaussian mixture, or a normalized sum of multiple Gaussian 
PDFs, except that the parameter F may differ from 1. To automate clustering, we use the well-
known Expectation Maximazation (EM) algorithm designed for the Gaussian mixture PDF. The 
only free-variable parameter in this algorithm is the number of clusters. 

The new multi-modal PDF for p
s|r is applied to an array deployment scenario using the surface 

velocity field obtained from a 1/12� HYCOM over the Gulf of Mexico. Figure 1 shows a sample 
velocity field and the target array configuration (red dots) with 49 gridded locations. In this sce­
nario the target locations are to be reached in 10 days after deployment. The deployment region 
estimated using an unconstrained ensemble of drifter locations (Fig. 1, black contours) is larger 
than those estimated using constrained ensembles (Figs. 2-5; Table 1, second column). For the 
constrained ensembles, 1 to 4 clusters have been used (Figs. 2-5, respectively). The “coverage” 
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performance scores are significantly different depending on the number of clusters used (Table 1, 
third column), where the 4-clustered ensemble is the only one with the complete coverage (with a 
score of 100) among the constrained cases. This demonstrates the importance of clustering (and 
more generally the use of multi-modal PDF) in application of the particle filter to the ILP problem. 
In this example, the RPF (4-cluster) solution resulted in a deployment region with approximately 
half the area compared to the unconstrained solution, while the efficiency of the deployment is 
increased by 22% (Table 1). 

IMPACT/APPLICATIONS 

We have explored a particle filter approach to solve the inverse Lagrangian prediction problem 
by an ensemble simulation of backward trajectories. The numerical experiments demonstrate that 
ensemble spread can be controlled using a constraint derived empirically and that the constrained 
solution leads to a spatially more compact estimate of the launch site. The constrained solution 
is thus more efficient than the unconstrained counterpart, while not compromising much effec­
tiveness in delivery to the intended target sites. Due to high demands for shipping resources in 
drifter deployment, adopting the technique to actual operations and evaluating its benefits would 
be potential topics of future investigation. 

To this end, we have initiated collaborations with research groups interested in fish larval dispersion 
(Cowen et al, 2008) and oil spill contingency planning (Bergueiro et al, 2008). The “drifters” in 
these cases are not exactly passive tracers. For example, fish larva can locally migrate towards more 
favorable physical and chemical environments, while sea surface oil can gradually evaporate into 
atmosphere. The dynamic models in these cases will hence be more complex than those examined 
in our work so far. Application of the particle filter to these cases would still be straightforward, 
due to the flexibility of the algorithm. 

RELATED PROJECTS 

The data assimilation (EnROIF) component of this project has been associated with the U.S. GO­
DAE: Global Ocean Prediction with the Hybrid Coordinate Ocean Model (HYCOM), in collabo­
ration with the HYCOM Consortium (http://hycom.rsmas.miami.edu). 

The ILP solution methodology developed in this project is planned to be incorporated into the 
Connectivity Modeling System designed for the larval dispersal study (Cowen et al, 2008). In 
initial studies, HYCOM simulated velocity fields over the Intra-America Seas region are used. 
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Figure 1. Unconstraint-ensemble. The black line is 95% probability contour of the prediction 
launch location to cover the target array (red dots) in the center of Gulf of Mexico. The pre­
diction horizon is 10 days. The background flow (light blue vectors) is obtained from 1/12� 

HYCOM output. 
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Figure 2. 1-cluster RPF. The same as Fig. 1, except that the ensemble is constrained by an RPF 
employing p

s|r with 1 cluster. 
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Figure 3. 2-cluster RPF. The same as Fig. 1, except that the ensemble is constrained by an RPF 
employing p

s|r with 2 clusters. 

release area coverage efficiency 
⎣ ⎤ ⎣ ⎤ 
ARPF/AEns RPF/µEnssource site (min �) µ

95 95 

Unconstrained Ens 1.00 100.0 1.00 
1-cluster RPF 0.41 0.0 1.12 
2-cluster RPF 0.60 1.6 1.05 
3-cluster RPF 0.46 17.9 1.20 
4-cluster RPF 0.51 100.0 1.22 

Table 1. Skill scores from the array depolyment experiment. 
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Figure 4. 3-cluster RPF. The same as Fig. 1, except that the ensemble is constrained by an RPF 
employing p

s|r with 3 clusters. 
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Figure 5. 4-cluster RPF. The same as Fig. 1, except that the ensemble is constrained by an RPF 
employing p

s|r with 4 clusters. 


